
i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
September 1997

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE

DEVELOPING A STANDARD PLATFORM-LEVEL ARMY OBJECT
MODEL

5. FUNDING NUMBERS

6. AUTHOR(S)

Dudgeon, Douglas E.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TRADOC Analysis Center
P. O. Box 8692
Monterey, CA 93943-0692

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Before 1990, the Department of Defense (DoD) modeling and simulation effort was fragmented and uncoordinated.

Developers of new simulations usually had to start from scratch and could reuse very few of the components from legacy models.
Simulations from different developers were incompatible and inconsistent. One of the features of object-oriented programming
(OOP) is the prospect of reusing design and code on future projects. However, reuse does not simply happen, it must be planned
by thinking beyond the immediate application and developing a more general design.

Interoperability and reuse are limited because DoD lacks a common technical framework for simulation architecture.
The Army Modeling and Simulation Office (AMSO) Master Plan’s primary objective is the creation of this framework. Central
to the plan is the development of a standard army object model. This thesis documents the development of the initial version of
the standard army object model. The role of the standard army object model is to enhance interoperability and reuse and to
achieve a minimal level of uniformity in Army simulations. This standard will specify object-oriented properties for classes, and
class hierarchies for use with future high resolution simulation development.

A modified version of Rumbaugh’s Object Modeling Technique was used to develop the object model. A component-
based design was adopted. The object model is code independent and minimal in design to allow developers maximum
flexibility. The research indicates that the standard army object model can also serve as a focal point for other initiatives
outlined in the AMSO Master Plan.

14. SUBJECT TERMS
Object modeling, Rumbaugh’s OMT, Object Oriented Analysis, simulation, combat modeling

15. NUMBER OF PAGES
84

16. PRICE CODE

17. SECURITY
CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY
CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18
 298-102

ii

iii

Approved for public release; distribution is unlimited.

DEVELOPING A STANDARD PLATFORM-LEVEL ARMY OBJECT
MODEL

Douglas E. Dudgeon
Captain, United States Marine Corps

B.S., United States Naval Academy, 1991

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL

September 1997

Author: ___
Douglas E. Dudgeon

Approved by: ___
Arnold Buss, Thesis Advisor

Leroy A. Jackson, Second Reader

Richard E. Rosenthal, Chairman

Department of Operations Research

iv

v

ABSTRACT

Before 1990, the Department of Defense (DoD) modeling and simulation effort

was fragmented and uncoordinated. Developers of new simulations usually had to start

from scratch and could reuse very few of the components from legacy models.

Simulations from different developers were incompatible and inconsistent. One of the

features of object-oriented programming (OOP) is the prospect of reusing design and

code on future projects. However, reuse does not simply happen, it must be planned by

thinking beyond the immediate application and developing a more general design.

Interoperability and reuse are limited because DoD lacks a common technical

framework for simulation architecture. The Army Modeling and Simulation Office

(AMSO) Master Plan’s primary objective is the creation of this framework. Central to

the plan is the development of a standard army object model. This thesis documents the

development of the initial version of the standard army object model. The role of the

standard army object model is to enhance interoperability and reuse and to achieve a

minimal level of uniformity in Army simulations. This standard will specify object-

oriented properties for classes, and class hierarchies for use with future high resolution

simulation development.

A modified version of Rumbaugh’s Object Modeling Technique was used to

develop the object model. A component-based design was adopted. The object model is

code independent and minimal in design to allow developers maximum flexibility. The

research indicates that the standard army object model can also serve as a focal point for

other initiatives outlined in the AMSO Master Plan.

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION ...1

A. BACKGROUND ...3

1. Current Army Combat Modeling Initiatives..3

a. FDB ...4

b. HLA ..5

c. Standard Algorithms ...6

2. Object-oriented Programming Overview ..7

3. Model Resolution ..8

4. Selected Combat Models Overview ..9

B. STATEMENT OF THESIS ...10

II. METHOD...13

A. OBJECT MODELING OVERVIEW ...13

B. OBJECT MODEL FEATURES..14

C. ADVANCED CONCEPTS...17

1. Aggregation ...17

2. Generalization..18

D. OBJECT MODEL DEVELOPMENT ..19

E. STANDARD ARMY OBJECTS ..20

F. CHAPTER SUMMARY ...21

III. ANALYSIS OF LEGACY AND FUTURE MODELS ..23

A. LEGACY SIMULATIONS ..23

1. Janus……. ...23

2. MODSAF ..25

B. DEVELOPMANTAL SIMULATIONS..30

1. WARSIM 2000..30

2. JWARS..37

viii

C. DISCUSSION ...45

IV. STANDARD PLATFORM-LEVEL ARMY OBJECT MODEL.............................47

A. HIERARCHY MODEL ..47

B. COMPONENT BASED MODELS ..48

1. Platform and Platform Components Classes ...49

2. Communication, Supply and Carrier Classes ..52

3. Weapon, Sensor, Hull and Movement Classes..53

4. Platform Example..56

a. Generic Tank Example..56

b. M1A2 Example...57

C. STANDARD ALGORITHMS..58

D. DISCUSSION ...60

V. CONCLUSION AND RECCOMENDATIONS..63

A. SUMMARY..63

B. INTEROPERABILITY ...63

C. REUSE..64

D. FOCAL POINT...64

E. AREAS FOR FURTHER STUDY ...64

LIST OF REFERENCES ...67

INITIAL DISTRIBUTION LIST ...69

ix

Table of Figures

Figure 1. Class Notation ...15

Figure 2. Class Hierarchy (Generalization) ..15

Figure 3. Associations...16

Figure 4. Object Model Example..16

Figure 5. Aggregation and Association Example..18

Figure 6. Inheritance Example..18

Figure 7. Janus Platform Class Hierarchy [Larimer, 1997] ..24

Figure 8. Refined Janus Platform Class Hierarchy [Larimer, 1997] ...25

Figure 9. ModSAF Top Level Entity Object Model ...26

Figure 10. ModSAF Hull Class ..27

Figure 11. ModSAF Missile Class..28

Figure 12. ModSAF Weapon Class ...28

Figure 13. ModSAF Sensor Class...29

Figure 14. WARSIM 2000 Top Level Equipment Object Model [Hopkins, 1997]......................................31

Figure 15. WARSIM 2000 Supply Class [Hopkins, 1997]...32

Figure 16. WARSIM 2000 Simulated Physical Thing Class [Hopkins, 1997] ...32

Figure 17. WARSIM 2000 Movement Platform Class [Hopkins, 1997] ..33

Figure 18. WARSIM 2000 Weapon Class [Hopkins, 1997]...34

Figure 19. WARSIM 2000 Communication Equipment Class [Hopkins, 1997] ..35

Figure 20. WARSIM 2000 Computer Equipment Class [Hopkins, 1997]..36

Figure 21. WARSIM 2000 Sensor Class ..36

Figure 22. JWARS Top Level Object Model [JWARS, 1996b]...38

Figure 23. JWARS Asset Class [JWARS, 1996b]..39

Figure 24. JWARS Sensor Class [JWARS, 1996b]..40

Figure 25. JWARS Weapon Class [JWARS, 1996b] ...41

Figure 26. JWARS Platform Class [JWARS, 1996b]...43

x

Figure 27. JWARS Aircraft Class [JWARS, 1996b] ..44

Figure 28. JWARS Fighting Aircraft Class [JWARS, 1996b]..44

Figure 29. JWARS Combat Support Aircraft [JWARS, 1996b]...45

Figure 30. Alternate JWARS Aircraft Class ...48

Figure 31. Standard Platform and Platform Component Class ...50

Figure 32. Platform Class Aggregation...50

Figure 33. Standard Location Class ..52

Figure 34. Standard Movement Class ...54

Figure 35. Standard Sensor Class ...55

Figure 36. Tank Class ...57

Figure 37. M1A2 Class...58

Figure 38. Modified Hull Class ..59

xi

EXECUTIVE SUMMARY

The Department of Defense has used simulations for force and weapons design,

material acquisition and training for more than four decades. Before 1990, the

Department of Defense (DoD) modeling and simulation (M&S) efforts were fragmented

and uncoordinated. Developers of new simulations typically had to start from scratch and

were able to reuse few of the components from legacy models. This was mostly due to

poor documentation and the fact that many of the models were implemented in procedural

languages. Developers used their own data and algorithms in their simulations.

Consequently, simulations from different developers were usually incompatible and

yielded inconsistent portrayals of the same phenomenon.

Object-oriented programming (OOP) has replaced procedural programming as the

dominant programming paradigm. Object-oriented programming is a style of software

development which models the relationships among the objects which make up a problem

rather than the procedures used to solve the problem. One of the features of OOP is the

prospect of reusing design and code for future projects. This saves time and money and

allows more effort to be placed on verifying the code that is reused. However, reuse does

not simply happen, it must be planned by thinking beyond the immediate application and

developing a more general design.

Interoperability is the degree to which different simulations interact.

Interoperability and reuse have been limited in the past, because DoD lacked a common

technical framework for simulation architecture. The Defense Modeling and Simulation

Office (DMSO) was created to coordinate simulation policy for the DoD. Based on

xii

guidance from DMSO, the Army Modeling and Simulation Office (AMSO) issued the

AMSO Master Plan to establish the Army’s vision for modeling and simulation. There

are six major objectives in the AMSO Master Plan. The primary objective is to develop a

common technical framework. The standard army object model is part of this effort to

implement a common technical framework. [AMSO, 1995]

An object model is a representation of the static, structural aspects of a system.

Developing an object model is often the first step in writing an object oriented program.

The role of the standard army object model is to enhance interoperability and reuse and to

achieve a minimal level of uniformity in Army simulations. This standard will specify

object-oriented properties for classes, and class hierarchies for use with future high

resolution simulation development. This will provide common names and interfaces

through which objects can communicate. These classes should serve as a common

starting point for future development efforts. The only constraint that the object model

imposes is that the programming language used to implement the simulation must support

object-oriented programming.

 This thesis documents the development of the initial version of the standard army

object model. The developed object model is code independent and minimal in design to

allow developers maximum flexibility. A component-based modeling philosophy is

adopted. Each component is used to represent one or more battlefield functions such as

target acquisition, attrition and sustainment.

The research indicates that a the standard army object model can also serve as a

focal point for other initiatives outlined in the AMSO Master Plan. Two of these

initiatives are the development of standard algorithms and a Functional Description of the

xiii

Battlespace (FDB). Standard algorithms are standard descriptions of primary battle field

functions such as attrition and target detection. The FDB is a simulation independent

repository of data designed to support simulation development. The standard algorithms

can be incorporated into the object model allowing design and data requirements for the

algorithms to be easily displayed. Thus the standard army object model serves as an

effective interface between standard algorithms and the data required to support those

algorithms.

xiv

1

I. INTRODUCTION

The United States Army has used computer simulations for years to train combat

leaders and to analyze problems in areas such as combat operations, procurement, force

structure, and tactics, techniques and procedures. Recent advances in computing power

as well as budget reductions have made the use of modeling and simulation (M&S) even

more important and widespread.

Currently, there are major procurement programs underway in each of the

branches of the armed forces and in the Department of Defense (DoD) to develop new

combat models and simulations. These models seek to improve upon the deficiencies of

those in use today, some of which have been in existence for over 15 years. Without

exception, each of these programs have had to start from scratch and have reused very

few of the components from legacy models. This is mostly due to poor documentation in

the models and the fact that many of the models, such as Janus, VIC, and TACWAR, are

implemented in procedural languages.

One of the features of object-oriented programming (OOP) is the prospect of

reusing design and code on future projects. Reuse is the ability to take a segment of code

or an object and use it in multiple programs. However, reuse does not simply happen, it

must be planned by thinking beyond the immediate application and developing a more

general design. Developing an object model is often the initial step in developing an

object-oriented program. An object model is a portrayal of the objects in a system and

their relationships; it serves two purposes: as a blueprint for developers and as a

communication tool between the customer and the developer.

2

The Army Modeling and Simulations Office (AMSO) Master Plan is the Army’s

implementation of the Defense Modeling and Simulations Office (DMSO) Master Plan.

It details the Army’s modeling and simulation vision, objectives and the standards

development process. [AMSO, 1995] Two of the themes that resonate throughout the

plan are interoperability and reuse of models and simulations. Interoperability is the

ability of a simulation to interact with other models. As a major user of models and

simulations, the DoD desires reuse and interoperability to reduce costs and speed up the

development of new software. M&S interoperability and reuse can not be achieved

without a common technical framework. This common technical framework is the

fundamental objective shared by the Army and DoD Master Plans. There are six major

objectives in both Master Plans and the Army has developed 18 standards categories that

support these objectives as shown in Table 1.

AMSO Objectives Standards Categories
1. Provide a common M&S technical framework • Architecture

• Data
• Visualization
• Object Management
• Functional Description of the Battlespace

2. Provide timely and authoritative environmental
representations

• Terrain
• Dynamic Environments

3. Provide authoritative representations of systems • Acquire
• Attrit
• Move
• Logistics
• C3 Systems
• Mobilization
• Deployment
• Cost Representation

4. Provide authoritative representations of human
behavior

• Reasoning
• CGF

5. Provide an M&S infrastructure to meet developer
and end-user needs

• VV&A

6. Share M&S benefits

Table 1. Standards Categories [AMSO, 1996]

3

Several initiatives support this common technical framework. The Functional

Description of the Battle Space (FDB) is a simulation-independent data repository that is

under development by the United States Army Simulation, Training, and Instrumentation

Command (STRICOM). The High Level Architecture (HLA) is a DoD sponsored

initiative which primarily seeks to facilitate interoperability among simulations and to

promote reuse. Object models are a key feature of both the FDB and HLA. Standard

algorithms is a topic heading that includes the development of standard algorithms for

battle field functions including, but not limited to, attrition, target acquisition and

movement.

This thesis will conduct an analysis of selected simulations to recommend a

standard object model with high level abstract classes for use in future object-oriented,

entity level combat models and simulations.

A. BACKGROUND

The following sections are broad overviews of the different subjects that are

covered in the thesis.

1. Current Army Combat Modeling Initiatives

This thesis is part of an AMSO directed study being performed by the Training

and Doctrine Command Analysis Center-Monterey (TRAC-MTRY), in support of the

Object Management Standards Category. Object Management is defined as follows:

The process that develops an Army wide environment where modeling and simulation
efforts produce programming objects that are consistent in their representation of object attributes,
generally understood by all decision makers and the modeling community, and where they promote
simulations with policy compliant objects that are interoperable at all levels allowed by their battle
environment. The goals are to use standard object classes and object class attribute definitions in
building all future simulations; to develop all future object class code to be HLA complaint; and to
develop HLA simulation object model (SOM) policies which will focus on consistent attributes for
publication/reflection. [AMSO, 1997]

4

The object model that is developed in this thesis will be reviewed by the Standards

Category Coordination Committee for use in the standard. There are several other

standard categories with ongoing work that will impact this study.

a. FDB

The development of a simulation system or model requires basic

information that describes the physical environment, systems and material contained in

the environment, human characteristics, organization, doctrine, processes and their

interactions. In the past, the contractors for a particular simulation would be responsible

for collecting all of this information. Often the sources of this information were not

documented and the data were rarely made available to future developers. Therefore,

when a new simulation was developed, there was minimal sharing of information. This

led to different developers using different sources for the same information, yielding

inconsistent representations of the real world.

To combat this problem, the DMSO Master Plan directed the development

of a Conceptual Model of the Mission Space (CMMS). The Functional Description of

the Battlespace is a US Army research and development effort managed by the

Simulation, Training and Instrumentation Command (STRICOM) in conjunction with the

National Simulation Center (NSC). It is the Army’s contribution to the CMMS effort.

The purpose of the FDB is, ”to document the standard descriptions of components and

characteristics of battlefield functions that must be represented to produce credible

simulations.” [Pettitt] The FDB is specifically designed to support the development of the

Warfighter’s Simulation (WARSIM) 2000 and future simulation efforts in the collection

5

of validated, standard descriptions of battle field functions, physical algorithms,

equipment characteristics and terrain data.

The FBD has the following goals:

• Collect data relevant to the M&S community

• Transform collected data into useful information

• Present information in a domain specific view for each user

Access to non-classified information is via the Internet. The sources for the data are

primarily U. S. Army doctrinal publications and activities. [Blakely, 1996]

b. HLA

One of the primary uses of simulations in the Department of Defense is

training. A key feature of many training simulations is the ability to link users from

remote locations together. The architecture that has provided this simulation

interoperability is called Distributed Interactive Simulation (DIS); however, there are a

number of limitations to DIS. As the number of users increases the speed of the

simulation slows down, creating a strict upper limit on the number of units that can

participate. Furthermore, DIS only supports interoperability between high resolution or

entity level simulations; there is a need to link high and low resolution models together.

In August, 1996, DMSO proposed a successor to DIS called the High

Level Architecture (HLA). HLA standardizes the procedures for linking simulations by

providing a set of rules for interoperability, a Run Time Interface (RTI), and a format for

representing individual simulations and groups of simulations with the Object Model

Template (OMT). A group of individual simulations becomes a federation when

connected over a network through the Run Time Interface. The OMTs provide object

6

model depictions of the simulations and the federation called the Simulation Object

Model (SOM) and the Federation Object Model (FOM). The SOM consists of an object

class structure, an interaction table, an attribute/parameter table and a FOM/SOM

Lexicon (data dictionary) for an individual simulation. The FOM includes the same

components as the SOM, but is an object model template of the federation. [Larimer,

1997]

The DoD has stated that all simulations must be HLA compliant by fiscal

year 2001 or receive a waiver. This primarily applies to simulations that will be linked

and it does not apply to closed programs that are used strictly for analysis. [USD, 1996]

Since the purpose of this thesis is to develop a standard object model for all types of high

resolution simulations, the object model developed must support the HLA standards.

c. Standard Algorithms

The third objective of the AMSO master plan is to, “Provide authoritative

representations of systems.” The Army supports this objective with 8 standards

categories:

• Acquire

• Attrit

• Move

• Logistics

• C3 Systems

• Mobilization

• Deployment

• Cost Representation

7

With the exception of the last category, all of these categories encompass corresponding

algorithms. [AMSO, 1996] Research is underway in all of these categories. As work is

completed, the standard object model that is developed in this thesis can be updated to

reflect the standard algorithms.

2. Object-oriented Programming Overview

Object-oriented Programming refers to a style of programming that develops

software as a collection of discrete objects that incorporate data structure and behavior.

An object consists of the data or attributes that describe the object, together with the

methods that operate on this data. Methods have names, may accept parameters as input

and may return a value. The combination of a method’s name, parameters and output

type is called a signature. Two or more methods may use the same name but be

differentiated by their signatures. This is commonly referred to as overloading a method.

 A class is a set of objects that have common attributes and methods. A class is a

template or blueprint for objects and every object is an instance of some class. Four

generally accepted properties of OOP are abstraction, encapsulation, inheritance and

polymorphism.

Abstraction can be defined as the stripping away of irrelevant details in order to

concentrate on relevant aspects. It is a means of coping with complexity, and is a natural

part of problem solving. Abstraction of a problem leads to a structured class hierarchy

where objects with common structure are grouped under a class.

Encapsulation is the separation of the internal implementation of an object’s data

from its public interface, i.e. the parts which are accessible to other objects. This frees

the user from needing to know how an object is implemented and allows a programmer to

8

change the implementation without affecting the user, as long as the interface does not

change.

Inheritance is the ability of a class to have all of the attributes and methods of

another class, possibly adding additional attributes and methods. A subclass extends its

parent’s or superclass’s attributes and methods and adds its own. Classes can be

organized into a hierarchy with the most general classes as superclasses and more

specialized classes as subclasses.

Polymorphism is the ability of objects to present a similar interface but use

different implementations. For example, a superclass such as Shape might have a method

called draw(). Two subclasses of Shape could be Circle and Square. Circle and Square

would both have a draw() method, by virtue of inheritance, but they could override it and

implement it as needed.

3. Model Resolution

Combat models can be classified as high or low-resolution according to the level

of detail present in the model. High-resolution models usually have enough detail to

represent individual vehicles and personnel. They are often referred to as entity or

platform-level models. These models are typically used in battalion level simulations and

below. As the number of units in a simulation increases it becomes more difficult to

process all of the required information, so individual platforms are aggregated into units

such as platoons and companies. As the size of the simulation increases further small

units are again aggregated into larger units; these low-resolution simulations are known

as aggregate or unit-level simulations.

9

The algorithms used to represent combat functions are significantly different in

high and low resolution models. Entity level models will usually compute line of sight

between individual vehicles and keep track of attrition on an entity basis. As the

resolution decreases, attrition is computed on a unit basis through the use of Lanchester

equations or some other process.

4. Selected Combat Models Overview

As a basis for developing a standard army object model, two legacy (Janus and

ModSAF) and two developmental simulations (WARSIM and JWARS) were studied.

Janus is a high resolution (battalion level), six-sided closed, stochastic, ground combat

simulation used for both training and analysis. Although it is not an object-oriented

simulation, an object model of Janus has been developed . [Larimer, 1997] ModSAF

(Modular Semi-Automated Forces) is used to populated high resolution training

simulations with realistic forces and is one of several SAF programs.

WARSIM is the Army’s next-generation simulation to support Force XXI. It will

replace the Corps Battle Simulation and the Brigade/Battalion Battle Simulation. It is

intended for battalion level training and above. WARSIM is the Army’s contribution to

JSIMS and it will be HLA compliant. JSIMS is the Joint Simulations System. Though

initially focused at the operational level of war for both combat operations and operations

other than war, JSIMS will be extensible to the strategic level (e.g., activities involving

multiple Commander In Chiefs (CINCs) and/or theaters) and to the tactical level (e.g., the

prosecution of individual battles or engagements) to support multi-echelon exercises and

contingency planning.

10

JWARS is a theater-level analytic model, scheduled to be the replacement for

TACWAR. JWARS is being developed from an object-oriented model, and is planned to

be stochastic, while TACWAR is deterministic. There is a Memorandum of Agreement

between JWARS and JSIMS that states that both programs will use the object model that

is being developed by JWARS [JWARS, 1995]. The WARSIM program is developing

its own object model, so while WARSIM is to be incorporated into JSIMS, it is proposing

a different object model.

B. STATEMENT OF THESIS

A set of standard objects and classes will help maintain consistency among Army

models and foster both interoperability and model reuse. (In the above case it would have

provided a common starting point for WARSIM and JSIMS, whereas now they are using

different object models in their development.) The intent is to give simulation developers

a common starting point without dictating implementation.

This thesis will examine the following questions:

• What is the appropriate resolution for standard classes?

• What are examples of appropriate object standards for entity level simulations?

• How are standard object attributes related to standard data and standard

algorithms?

• Are there additional standard algorithms or data requirements for the standard

objects?

 The analysis will consist of the following tasks:

• Examining legacy and developmental simulations to determine the salient

features of their class representations.

11

• Identifying sample standard objects. This will include arranging the objects in

a class hierarchy and documenting the rational for the standardization of these

objects.

• Demonstrate the ability to cross reference data and algorithm standards with

the attributes and behaviors of the standard objects.

The primary data sources are the documentation for the simulations being examined and

the data and algorithm standards documents produced by the standards committees.

12

13

II. METHOD

This section discusses the methodology used to create the standard army object

model, Rumbaugh’s Object Modeling Technique (OMT).

A. OBJECT MODELING OVERVIEW

A model is an abstract representation of something with the purpose of increased

understanding. A model omits nonessential details and is consequently easier to

manipulate and understand than the real world entity. Models have been used for

centuries and can take many diverse forms, such as blue prints, scale models, and CAD

models. Building a model before starting to build a complex system enables the

designers to spot flaws. Changing a model is much easier and cheaper than modifying the

real thing.

An object is an abstraction with crisp boundaries and meaning for a specific

problem. For example a tank, an operations order, and 1st platoon are all objects. An

object model describes the structure of objects in a system, their identity, attributes and

methods and their relationship with other objects. The goal of an object model is to

capture the essential concepts from the real world that are important for the problem at

hand. The object model serves as a bridge between the customer and the programmers;

they are useful both for abstracting a problem and for designing a program.

James Rumbaugh’s OMT is one form of object-oriented analysis that produces an

object model and it has been used on several DoD programs. This thesis will use a

modified form of Rumbaugh’s OMT to build the standard army object model. There are

three models produced using Rumbaugh’s OMT. The object model represents the

14

structure of objects in a system - their identity, their relationships to other objects and

their attributes and methods. The dynamic model represents those aspects of a system

that change over time and the sequence of operations. The functional model describes

transformations that occur in a model without regard to when those transformations

occur. The last two models are primarily concerned with implementation of the model.

Since the standard army object model avoids specifying implementation, this thesis will

only include the development of an object model.

B. OBJECT MODEL FEATURES

The object model is represented graphically using object diagrams that contain

object classes. Classes each have a unique name and define the attributes and methods

carried by each object instance. Attributes and methods can be classified by their level of

accessibility. Attributes and methods may be private, public or, protected. A private

attribute or method can only be accessed or changed by the original class in which its is

first used. In general attributes should be private to support encapsulation. If it is

desirable for other classes to access private attributes, then special methods are provided

that allow other classes to change or access this data. These methods are usually called

“setter” and “getter” methods, respectively. Public attributes and methods can be

accessed by any class. Protected attributes and methods can only be accessed by the

original class or its descendants.

The accessibility of all attributes in the standard army object model allow full

flexibility in implementation. If the attributes are made private in an implementation,

then the appropriate setter and getter methods must be provided. Methods must be made

public in order provide a useful interface. Figure 1 details the class notation; the symbol

15

with the attributes indicates that the implementation decision is left up to the

programmer. The symbol associated with the methods indicates that it is public.

Class Name

attributes

methods (parameters) : output type

Figure 1. Class Notation

Classes sharing common attributes and methods are arranged into hierarchies.

This defines the subclass/superclass relationship. The superclass is often referred to as

the ancestor of its subclasses. Subclasses inherit all of the attributes and methods from

their ancestors and can added their own attributes and methods. This relationship is often

referred to as an “is-a” relationship. Any descendent is also an instance of its ancestors.

Classes can also be associated with one or more other classes. An association is a

conceptual connection between classes. Multiplicity specifies how many instances of one

class may relate to a single instance of a associated class. Figures 2 and 3 illustrates these

concepts.

Subclass1

Superclass

Subclass2

Discriminator

Generalization

Figure 2. Class Hierarchy (Generalization)

16

Figure 3. Associations

Objects are often made up of other objects. A lamp is made up of a base, a cover,

a switch and wiring. In other words a lamp may be viewed as an aggregation of its parts.

This is often described as a “has-a” relationship, as in the statement, a lamp has a switch.

The amount of aggregation in a model is a function of how much detail is desired for a

particular problem. Assume that an architect is designing a house using computer aided

design software. If the only purpose of a lamp in the design is as a light source, then

aggregation may not be necessary; the component parts do not affect the brightness of

the lamp. However, if an engineer is designing a lamp, then the aggregation is desirable;

aggregation allows the engineer to analyze tradeoffs between different components in the

lamp. To illustrate the concepts of inheritance, association and aggregation, the following

example is provided:

Lamp

brightness

turnOn()
turnOff()

Flourescent Halogen

Base Cover Switch Wiring

ConsumesProvidesWall Outlet

Power

Figure 4. Object Model Example

17

A lamp is made up of (is an aggregation of) a base, a cover, a switch and wiring. Lamps

can be classified as Fluorescent or Halogen. Both Fluorescent and Halogen inherit the

methods turnOn() and turnOff() and they both have a brightness. Fluorescent and

Halogen are specializations of the Lamp superclass. Lamps are associated with Wall

Outlets. Note that this association has a specific name that describes the association.

Associations are bi-directional. The name of the association should imply a direction and

the inverse relationship is inferred. A wall outlet may provide power for zero or more

lamps, while a lamp may draw power from zero or one outlets.

C. ADVANCED CONCEPTS

The concepts of association, generalization and aggregation will now be discussed

in greater detail.

1. Aggregation

Aggregation is a strong form of association in which the aggregate object is made

up of its component parts. In some cases, making the distinction between aggregation

and association is difficult. In general, if two objects are bound by a parts-whole

relationship than it should be modeled as an aggregation. If the two objects are usually

considered to be independent even though there is a strong link then this should be

modeled as an association. The decision to use aggregation or association is often a

matter of judgment and there are no firm rules. For example, in Figure 5, a commercial

Company is modeled as an aggregation of its Divisions and Departments while

Employees are only associated with the company. In the military domain it would be

appropriate to model a unit as an aggregation of the individual personnel and platforms in

the unit.

18

Division

Employees

Company Department

Works For

Figure 5. Aggregation and Association Example

2. Generalization

Aggregation is different from generalization. Aggregation relates instances; two

distinct objects are involved. Generalization relates classes and is a way of structuring

the description of an object. One of the most important features of inheritance is that an

instance of a class is an instance of all of its ancestor classes. This is a guarantee that all

descendants of a class will have the methods and attributes of its ancestors. Each

instantiated object also knows its class. To illustrate this, let Captain be an ancestor class

of PriorEnlistedCaptain (Figure 6).

Captain

dateOfCommisioning

computePay()

PriorEnlistedCaptain

computePay()

Figure 6. Inheritance Example

Captain has an attribute called dateOfCommissioning and a method called computePay()

where the amount computed depends on the dateOfCommissioning. Note that

19

PriorEnlistedCaptain is a descendent of Captain. One of the advantages to being a

PriorEnlistedCaptain is that the pay is higher than that of a regular captain.

PriorEnlistedCaptain would have the same attributes and methods as Captain by virtue of

inheritance, but computePay() would be overridden to reflect the higher pay status.

Suppose that all of the Captains with a certain dateOfCommissioning are told to compute

their pay. While all regular Captains with this dateOfCommissioning would compute the

same pay, the PriorEnlistedCaptains with this dateOfCommissioning would computed a

higher amount.

D. OBJECT MODEL DEVELOPMENT

The first step in developing an object model is to define the problem. For this

thesis, the problem is a general one of modeling land warfare at the platform-level.

However, the scope of the problem is not limited to land-based platforms, since air and

maritime platforms can both interact with land platforms. Thus any developed standard

must support platforms from the air, land and maritime domains.

Rumbaugh provides a list of steps to be followed when developing an object

model. The following steps are derived from Rumbaugh’s, but they have been modified

to reflect the steps followed in the development of the standard army object model:

• Identify objects and classes

• Prepare a data dictionary

• Identify attributes and methods of objects

• Organize and simplify object classes using inheritance

• Iterate and refine the model [Rumbaugh, 1991]

20

The first step is perhaps one of the more difficult steps in developing a generic

object model, since there are no clear cut bounds on the problem, nor is the resolution of

the models strictly defined. Should only vehicles be modeled? What about missiles?

Should the level of detail include individual bullets? Most of the platform-level models

studied limit the level of detail to representing individual vehicles and soldiers. Missiles

and rockets are usually modeled, but the level of detail is typically limited to modeling

the weapon’s effects. A standard object model must be able to accommodate multiple

levels of resolution at the entity level.

The purpose of the data dictionary is to clearly define the terms used in the model.

Isolated words often have ambiguous meanings that are open to interpretation. Next,

attributes and methods are assigned to the objects and the objects are subsequently

grouped by common attributes and methods. The classes are then simplified and grouped

into an inheritance structure. The final step of refining the model will occur after this

thesis has been published when the completed model is reviewed by the Standards

Category Coordinating Committee.

E. STANDARD ARMY OBJECTS

The purpose of the standard army object model for platform-level simulations is

to enhance interoperability and reuse. This will be accomplished primarily through the

use of the standard army object model as an interface with which objects may interact in a

generic way. The standards should impose little restrictions on the manner in which

features are implemented. The object model only specifies the minimum number of

attributes and methods necessary to perform an object’s functions. Additional attributes

and methods may be added in any implementation of the object model.

21

The developed model adopts a component-based approach to modeling platforms.

Instead of modeling an entire tank, different components will be combined to model the

tank. This gives the modeler much more flexibility and potential for reuse. Flexibility is

achieved by the ability to assemble components in different ways. For instance, a tank

can be fitted with an alternate main gun or sensor without altering the code that defines

that tank. Reuse is achieved by the ability to use the same sensor or weapon on a variety

of platforms.

The methods specified in the model provide the means of communication between

a platform and its components. They also provide the means of communication between

different platforms. This enhances the interoperability between simulations. By

providing a standard interface, even if simulations are implemented in different

languages, the information that is needed to communicate is already specified.

F. CHAPTER SUMMARY

This chapter has provided the reader with a basic understanding of the object

modeling process. The features and associated notation of Rumbaugh’s OMT were

introduced and explained. To further clarify key concepts, several examples were

presented. The following chapter will analyze existing and future simulations using the

OMT notation described in this chapter. The lessons learned from the analysis will then

be incorporated into the proposed standard army object model.

22

23

III. ANALYSIS OF LEGACY AND FUTURE MODELS

In this chapter an analysis will be conducted of two legacy simulations (Janus and

ModSAF) and two developmental simulations (WARSIM 2000 and JWARS). It will

point out the salient features of the models and highlight differences and similarities

between the models.

A. LEGACY SIMULATIONS

Both of the legacy simulations examined are high resolution simulations. They

model combat at the battalion level and below and represent most entities individually,

although entities may be combined into units.

1. Janus

An object model was developed for Janus as part of Larry Larimer’s thesis

entitled, “Building An Object Model Of A Legacy Simulation.” The purpose of his thesis

was to develop an HLA Simulation Object Model (SOM) for Janus. Two object models

were developed. The first object model was developed by grouping “platforms”

according to their physical characteristics. The term platform is used to denote any

individual object that can accept orders and performs tasks that are significant in a

military context. These platforms were based primarily on the Janus user’s data base

which lists each platform that the user might introduce to a scenario. Attributes were

listed for each platform and platforms with common attributes were combined into

classes. The resulting object class hierarchy is shown in Figure 7. [Larimer, 1997]

24

Wheeled
Platform

Tracked
Platform

Towed
Platform

Rotary Wing
Platform

Fixed Wing
Platform

Generic
Platform

Engineer
Platform

Artillery
Platform

Attack
Platform

Cargo/Utility
Platform

Recon
Platform

Combat Arms
Platform

Air Defense
Platform

Aircraft
Platform

Ground Vehicle
Platform

Platform
Superclass

Dismounted
Platform

Concrete
Class

Abstract
Class

Legend:

Figure 8. Janus Platform Class Hierarchy [Larimer, 1997]

In the second model, the objects were first grouped by Battlefield Operating

System (BOS) function, and then further sub-grouped by common attributes. The

battlefield operating systems distinguish the role of the platform in combat and include:

Intelligence, Command and Control, Maneuver, Mobility/Survivability, Air Defense, Fire

Support, and Combat Service Support. This model may be considered more suitable for

use by an analyst who may be more interested in a platform’s function rather than its

physical characteristics and is shown in Figure 34. This second platform class hierarchy

illustrates the flexibility of an object model to provide more than one appropriate model

of a simulation for military analysis and training. [Larimer, 1997]

25

Platform

Superclass

Fire Support

Platform

Mobility/Surviv

Platform

Air Defense

Platform

CSS

Platform

Maneuver

Platform

Intel/C&C

Platform

Dismounted

Platform

Ground Veh

Platform

Aircraft

Platform

Cannon

Platform

Counter Battery

Platform

Tracked
Platform

Wheeled
Platform

Rifleman
Platform

Crew Served
Platform

Fixed Wing
Platform

Rotary Wing
Platform

Concrete
Class

Abstract
Class

Legend:

Figure 9. Refined Janus Platform Class Hierarchy [Larimer, 1997]

2. MODSAF

ModSAF is implemented in Kernigan & Ritchie (K&R) C in order to maximize

compatibility with a variety of hardware platforms and because of the run-time efficiency

of C. Although K&R C is not an object-oriented language, ModSAF does employ what is

termed, “object based programming.” Instead of single inheritance, ModSAF uses

composition, where larger classes are composed of subclasses. There is a one-to-one

correspondence between object classes and certain libraries. [Loral, 1995]

ModSAF is used to generate weapons and vehicles commonly found in land

combat, therefore the types of systems represented are limited to ground and air systems

and dismounted infantry; maritime units are not represented. There are no published

object models for ModSAF. The following object model, presented in Figures 9 - 13,

was developed for this thesis based on information contained in the ModSAF user

documentation. It is by no means the only possible object model for ModSAF.

26

Weapon

rateOfFire
ammoAmount
positionOnVehicle
maxRange

load()
fire()
opname()

Turret

rotate()
elevate()
depress()
scan()

Hull

orientation

turn()
move()
travelRoute()

MineField

Entity

position

Sensor

range
effectiveDistance
arcsOfPrimacy
blindAreas

determineLOS()
detectTarget()
search()

Figure 10. ModSAF Top Level Entity Object Model

The ModSAF Entity is equivalent to a Janus Platform. An Entity may have

combinations of one or more of the following components: a Hull, a Turret, a Weapon, a

Sensor or a Minefield. In order for an object to have a position it must be part of an

entity. This means that instead of an instance a Minefield, there is an instance of an

Entity that has a Minefield. The Turret class is used to mount weapons and sensors and it

provides an Entity with those extra methods that are listed. The Hull, Weapon and

Sensor classes are explained below.

27

Fixed wing aircraft

maxAcceleration
performanceParameters

computeLift()
computeDrag()
computeThrust()
consumeFuel()

Hull

orientation

turn()
move()
travelRoute()

Tracked ground vehicle

consumeFuel()
turnInPlace()

Wheeled ground vehicle

minimumTurnRadius

consumeFuel()

Dismounted infantry

posture

turnInPlace()
mount()
ride()
dismount()

Rotary wing aircraft

maxSpeed
maxLift
performanceParameters

consumeFuel()

Missile
performanceParameters

consumeFuel()

Figure 11. ModSAF Hull Class

The Hull class in Figure 10 is used to provide a means of movement for an Entity.

The different subclasses of hull provide different types of movement. Missile is a

specialize subclass of Hull that has several subclasses as seen in Figure 11. Each of the

subclasses of Missile is differentiated by its performance parameters. The Weapon class

represents any object that is used to cause damage to an Entity. Finally, the Sensor class

gives an Entity the ability to detect other Entities.

28

GroundToGround

performanceParameters

Missile

performanceParameters

consumeFuel()

AirToGround

performanceParameters
AirToAir

performanceParameters

LogRange-RadarGuided

performanceParameters

MediumRange-RadarGuided

performanceParameters

ShortRange IRGuided

performanceParameters

Figure 12. ModSAF Missile Class

IndirectFire

Weapon

rateOfFire
ammoAmount
positionOnVehicle
maxRange

load()
fire()
opname()

MissileLauncherDirectFire MLRS

Figure 13. ModSAF Weapon Class

29

Sensor

range
effectiveDistance
arcsOfPrimacy
blindAreas

determineLOS()
detectTarget()
search()

VisualInfraRed Radar

Figure 14. ModSAF Sensor Class

ModSAF is used to generate very specific entities for use in distributed

simulations. The vehicles and individuals that it can represent are finite and a

representative list is included in Table 2. Attributes and methods have been included

with classes where appropriate; however, since many attributes and methods are

associated with specific vehicles or individuals, they are not be applicable to all of the

objects in a class. Some of the methods not included in the object model are supply(),

receive() and assess(). For example, not all Entities, such as one having a Minefield,

would need the ability to supply other Entities or to receive supplies.

30

United States Entities Russian Entities German Entities
M2 Bradley IFV T-80 medium battle tank LEO1A5 Leopard medium battle

tank
M3 Bradley IFV T-72 medium battle tank LEO2 Leopard II medium battle

tank
M1A2 Abrams main battle tank BMP1 armored fighting vehicle MARDER1A3 armored fighting

vehicle
M106A1 tracked mortar carrier BMP2 armored fighting veh. MTW M113 observer veh.
M109A1-A6 SP howitzer Mi-24 HIND attack helo JAGUAR1
M113 ambulance MIG-27 Flogger fixed wing

aircraft (FWA)
JAGUAR2

M113 observer MIG-29 Fulcrum FWA SKORPIAN
HMMWV SU-25 Frogfoot FWA PAH1 helo
M88A1 tank recovery veh. ZSU23-4 23mm air defense veh. Dismounted Infantry
M977 HEMTT - Cargo 2S1
M977 HEMTT - Fuel 2S6
Dismounted Infantry BRDM-2
A-10 Thunderbolt FWA BTR-80
F-14D Tomcat FWA BTR 60PU artillery veh.
F-16D FWA URAL 375C combat support

veh.
OH-58D Kiowa scout helo URAL 375F fuel truck
AH-64 Apache attack helo Dismounted Infantry
Avenger air defense 2B11 towed mortar
M2 Stinger air defense 2S19
M270 MLRS BM21
M981 FISTV Mi28 Rotary wing aircraft

(RWA)
M992 Mi8 RWA

Table 2. ModSAF Entities [ModSAF]

B. DEVELOPMANTAL SIMULATIONS

WARSIM and JWARS are simulations at the battalion level and above; however,

the object models developed for each simulation have an entity-level resolution. Both

simulations followed modified versions of Rumbaugh’s OMT in developing their object

models.

1. WARSIM 2000

An equipment object model was developed for WARSIM 2000 as part of the

software requirements analysis phase of the software development. This object model

was developed using a condensed version of Rumbaugh’s OMT and was based primarily

31

on the systems requirements document. [Castner, 1996] The steps that were followed

are:

• Identify and define object classes

• Identify attributes and operations of object classes

• Identify associations between object classes

• Organize object classes using inheritance [Hopkins, 1997]

Figure 14 depicts the top level view of the equipment object model. Equipment is

composed of supplies and simulated physical things. A simulated physical thing (SPT) is

that class of objects that, “has attributes of activity and state and is subject to attrition and

detection.”[Hopkins, 1997] SPT is equivalent to an Entity in ModSAF or a Platform in

Janus.

Supply

Equipment CSCI

Simulated Physical Thing

Figure 15. WARSIM 2000 Top Level Equipment Object Model [Hopkins, 1997]

The Supply class is further specified as shown in Figure 15. The subclasses

shown correspond to standard classes of supply used in normal army operations. Note

that Equipment Platform appears as a subclass of supply. Equipment Platform also

appears in Figure 16 as a subclass of SPT. This is an instance of multiple inheritance and

does not conform to HLA specifications. Since this is a requirements object model,

multiple inheritance may not be a problem. There are programming techniques that allow

32

much of the functionality of multiple inheritance without using multiple inheritance. An

example is the use of interfaces in Java.

Supply

Water

Class II

Personal Item

Food

Construction
Material

Medical Item

POL

Nonstandard Item

Munition

Repair Part

Equipment Platform

Figure 16. WARSIM 2000 Supply Class [Hopkins, 1997]

SPT

 Equipment
Platform

Platform
Component

 Life Form
Platform

 Personnel
Platform

 Animal
Platform

 Weapon

 Mission Specific
Device

 Communication
Equipment

 Cargo Container

 Power Supply

 Movement
Platform

 Computer
System

 Sensor

1 +

Figure 17. WARSIM 2000 Simulated Physical Thing Class [Hopkins, 1997]

33

SPT is the foundation class for all Equipment and Life Form Platforms. Both

Equipment and Life Form Platforms are composed of one or more Platform Components.

The Movement Platform class, shown in Figure 17, provides the means of locomotion for

all Equipment and Life Form Platforms. The darkened inheritance symbol below

Movement Platform denotes the ability to overlap subclass specializations, another form

of multiple inheritance. An example is an amphibious vehicle that would exhibit

behavior of a Ground Platform and a Water Platform. Apparently, all Life Form

Platforms would have a Living Body Platform, although there is nothing in the object

model that forbids an Equipment Platform from having a Living Body Platform. The Life

Form Platform class may be redundant; none of the attributes or behaviors that might

differentiate a Life Form Platform from an Equipment Platform are listed.

 Movement Platform

 Air Platform Space Platform

 Water Platform Ground Platform

 Surface Platform

Submersible
Platform

 Tracked Platform

 Wheeled Platform

 Rail Platform

 Living Body
Platform

Figure 18. WARSIM 2000 Movement Platform Class [Hopkins, 1997]

34

Weapons are composed of exactly one Aiming System and exactly one Delivery

System, as shown in Figure 18. Again, note the use of multiple inheritance implied by

the darkened inheritance symbol. The subclasses of Weapon are very similar to the ones

used in the Missile and Weapon classes in ModSAF. Although there is not a one-to-one

correspondence between classes in the two models, there are definite associations.

ModSAF’s generic concepts of Direct and Indirect Fire Weapon classes in Figure 12 are

included as specific Surface Direct and Indirect Weapon classes in WARSIM 2000, while

Air to Air and Air to Ground Missiles in ModSAF, Figure 11, are replaced by WARSIM

2000’s more generic Air to Air and Air to Ground Weapon classes. The Hand to Hand

Weapon class is unique; WARSIM 2000 is the only simulation included in this thesis that

models hand-to-hand weapons.

Weapon

 Aiming System

 Delivery System

 Air to Air
Weapon

 Surface Direct
Weapon

 Air to Ground
Weapon

 Surface Indirect
Weapon

 Ground to Air
Weapon

 Hand to Hand
Weapon

Figure 19. WARSIM 2000 Weapon Class [Hopkins, 1997]

35

WARSIM 2000 is required to allow commanders to interact with the simulation

while using organic communications equipment. The Communication Equipment and

Computer System classes, seen in Figures 19 and 20, seem to have been tailored to meet

this requirement. Communication Equipment can be composed of one or zero

transmitters and one or zero receivers. Communication Equipment is associated with a

Signal class that is specialized into Text, Data, Voice and Image classes. All of the

Signal subclasses are types of data that are transmitted on organic communications

equipment.

The Computer System class is unique to WARSIM 2000 and is tailored to meet

the requirement of communicating with organic communications and computer

equipment. For example, the MC Ghost ABCS, Army Battle Command System, class is

used to represent live ABCS equipment used by the training audience. This would allow

the live equipment to be detected and to interact with simulated equipment. [Hopkins,

1997]

 Communication Equipment

 Transmitter Receiver

 Text

 Voice

 Signal

 Image

 Data

transmits receives

Figure 20. WARSIM 2000 Communication Equipment Class [Hopkins, 1997]

36

 Computer System

 Fire Control
Computer

 Tracking
Computer

 Navigation
Computer

 Threat Analysis
Computer

 Data
Management

Computer

 C4I Computer

 Simulated C4I
Computer

MC Ghost ABCS
Equipment

Figure 21. WARSIM 2000 Computer Equipment Class [Hopkins, 1997]

Sensors are treated in a straight forward manner and the sensor class is shown in

Figure 21. The final subclass of SPT is Mission Specific Device. This class is not

elaborated upon at all and may be a catch-all class for objects that do not fall into any of

the previous categories.

Sensor

 Chemical
Detector

 Radar

 Optic Sensor Acoustic Sensor

 Seismic Sensor Radio Sensor

 Electromagnetic
Sensor

 Infrared Sensor

Figure 22. WARSIM 2000 Sensor Class

37

2. JWARS

The object model developed for JWARS is based on a Joint Mission Space Model

(JMSM) and the JWARS Testbed Scenario and Use Cases. JMSM is the end product of

researching, assembling and cataloging the knowledge necessary to define the entities, tasks, and

interactions that will be represented in JWARS. [JWARS, 1996a]

The scope of JWARS covers a vast spectrum of requirements. Given the complexity of the

JWARS mission space, the program office decided to focus analysis on specific functionality during

the simulation development. The testbed scenario is the first of several scenarios that are planned to

be used guide JWARS development. Additional scenarios are designed to increase the functionality

of the model. Each scenario is a specific application of JWARS as an analytic tool.

The object model that was developed as a result of this first testbed scenario is

very large, consisting of over seventy diagrams that detail the object, dynamic and

functional models. This thesis will analyze only those object model diagrams that

describe the entities modeled in JWARS.

The top level object model for JWARS is shown in Figure 22. This diagram

represents the major object classes identified in the analysis of the JWARS problem

domain. The border shading surrounding the classes means that additional diagrams exist

defining the object class in subsequent sections of The Joint Warfare System Object

Model. [JWARS, 1996b]

38

Figure 23. JWARS Top Level Object Model [JWARS, 1996b]

Assets denote any item used by a unit to perform its mission. This is the class that

is of primary interest and is detailed in Figure 23. Assets (other than Composite Assets)

are used to represent all primitive types of useful and valuable things. Composite Assets

are used to represent all types of Assets made up of other “primitive” Assets. A

Composite Asset can be composed of one or more “primitive” or Component Assets (e.g.

a specific Aircraft maybe composed of Sensors, Weapons, etc. and may carry Personnel

and Supplies). Note that a Composite Asset in JWARS is equivalent to a SPT in

WARSIM 2000, an Entity in ModSAF and a Platform in Janus. Since Composite Asset

is also a subclass of Asset, it inherits all of Asset’s attributes and methods. This

relationship also means that Composite Assets can be composed of one or more other

Composite Assets, as would be they case of an aircraft carrier with an air wing embarked.

Since Composite Asset is the only class with methods to move, receive attack and assess

attrition, most battlefield entities will be an instance of a Composite Asset.

39

Figure 24. JWARS Asset Class [JWARS, 1996b]

The Personnel class can be used to create dismounted infantry, as part of a

Composite Asset or to act as the crew for a Composite Asset. The Supply class can exist

separately from Composite Assets; however, a Composite Asset is never considered a

subclass of Supply as SPTs were in WARSIM 2000.

A Comm Node is a type of Asset that can be accessed via another Asset, a C2

Element, or a HQ. These classes have the ability to create, send, receive, and process

messages via the Comm Link. A Comm Node is physically located at the HQ or as part

of Composite Asset, thus it can be destroyed or degraded. The Comm Node represents

the logical interface to the remainder of the military communications network.

40

The Sensor Class shown in Figure 24 is an abstract class derived from the Asset

class. It is used to build any type of sensor system installed on any type of Asset or

Composite Asset. There are two basic categories of sensors, active and passive. Radar’s

are active sensors. The JSTARS Radar is an example of a composite asset with a Multi-

Mode Radar. Multi-Mode Radar is an aggregation of the MTI and SAR classes and can

operate in either mode (MTI/SAR).

Figure 25. JWARS Sensor Class [JWARS, 1996b]

Camera and SIGINT are Passive Sensors. Cameras can be IR or Visual. The Multi-Mode

Camera is also an aggregation, combining characteristics from the IR and Visual

41

Cameras. The SIGINT class is a specialized Passive Sensor that is used to detect electro-

magnetic radiation. [JWARS, 1996b]

The Weapon class, as shown in Figure 25, represents any instrument or device

used in the attack or defense in a fight or combat. Lethal and Non-Lethal Weapon are

two direct subclasses of Weapon. Weapon, Lethal Weapon and Non-Lethal Weapon are

all abstract classes. Lethal Weapon represents any class of weapons which are designed

to cause casualties or produce deadly effects to Composite Assets. The Non-Lethal

Weapon class represents any weapon which is not designed to induce casualties directly.

[JWARS, 1996b]

Figure 26. JWARS Weapon Class [JWARS, 1996b]

The Missile/Rocket class represents weapons that are thrown, shot, or propelled at

a target. The Bomb class represents weapons that are filled with explosive material and

detonated by a Fuse. The Torpedo class represents various subsurface explosive devices

42

for destroying ships or submarines. The mine class represents various floating or moored

explosive devices used to blow up ships, or on land against personnel and vehicles. The

Gun class represents any device for shooting ammunition. The Jammer class represents

any device that causes interference with detection. Instances of Missile, Rocket, Bomb,

and Torpedo classes can have Guidance Systems attached to them as part of a Composite

Asset. The Guidance System can be internally or externally controlled. [JWARS, 1996b]

The Guidance System in JWARS is equivalent to an Aiming System in WARSIM

2000. Beyond that there appears to be very few similarities between the Weapon class in

JWARS and those in ModSAF and WARSIM 2000. This highlights the variety of ways

in which weapons systems can be categorized. Some of the difference in JWARS may

stem from the limitations of the testbed scenario being used to develop the current object

model. Expanding the Gun class into Direct Fire and Indirect Fire classes is an example

of how one class might be expanded.

The Platform class is used to represent transportation means associated with

Units, C2 Elements, and Composite Assets and is shown in Figure 26. Platforms are

currently of type Land Vehicle, Aircraft, Maritime Platform and Space Platform. The

Aircraft class represents any machine supported for flight in the air by the dynamic action

of air on its surfaces. The Aircraft class is the only Platform class that is expanded. This

is a limitation imposed by the testbed scenario which places a heavy emphasis on air

platforms. The Land, Maritime and Space Platform classes represents a self-propelled,

boosted, or towed conveyance for transporting burdens on land, sea or in space,

respectively. [JWARS, 1996b]

43

Figure 27. JWARS Platform Class [JWARS, 1996b]

JWARS Platform class in equivalent to ModSAF’s Hull class and WARSIM

2000’s Movement Platform class. Unfortunately, the term “platform” is used in

WARSIM 2000 to also designate Equipment Platforms and Life Form Platforms. There

is a one-to- one correspondence between the subclasses of JWARS Platform class and

WARSIM 2000’s Movement Platform subclasses (Figure 17). WARSIM 2000 adds

more detail to its ground and Water Platform classes, in contrast to JWARS expansion of

its Aircraft class, which is shown in Figure 27.

The Aircraft class is characterized by various performance factors such as

maximum speed, cruise speed, maximum combat radius, etc. Fixed Wing and Rotary

Wing are two direct subclasses of Aircraft. The Fixed Wing class represents air platforms

which have wings that are rigidly and permanently attached to the fuselage. Rotary Wing

class represents air platforms which have one or more airfoils that rotate about an

approximately vertical axis. Both Fixed and Rotary Wing classes have specialized

subclasses: Fighting Aircraft, Combat Support Aircraft and Transport Aircraft. [JWARS,

1996b] The Fighting and Combat Support Aircraft class are shown in Figures 28 and 29.

44

Figure 28. JWARS Aircraft Class [JWARS, 1996b]

Figure 29. JWARS Fighting Aircraft Class [JWARS, 1996b]

45

Figure 30. JWARS Combat Support Aircraft [JWARS, 1996b]

C. DISCUSSION

Three of the models analyzed, ModSAF, WARSIM 2000 and JWARS, use a

modular approach in developing their object models. The object model developed for

Janus is a classification that was based on the common attributes and methods of the

platforms present. This approach was used to develop the HLA SOM; however, a

modular approach is also possible since the Janus platform has weapons, sensors and

other components.

There are similarities between all of the object models and any of the object

models can adequately represent the common army entities found on a modern battlefield,

e.g. tanks, infantry fighting vehicles, dismounted infantry, aircraft, etc. The biggest

differences between the object models are in the nomenclature used to represent nearly

identical objects. The primary example of this is that all four simulations use a different

term for battlefield entities. At a minimum, a standard army object model will provide a

common language for the development of new simulations.

46

47

IV. STANDARD PLATFORM-LEVEL ARMY OBJECT MODEL

The role of the standard object model is to enhance interoperability and to achieve

a minimum level of uniformity in Army ground combat simulations. The standard object

model will detail a set of classes with a minimum level of attributes and methods. The

standard classes are not comprehensively detailed. This gives as much flexibility as

possible to simulation developers.

A. HIERARCHY MODEL

Rumbaugh’s OMT provides a series of steps that are followed when developing

an object model. The first step of Rumbaugh’s OMT is to identify the objects and classes

in the problem domain. If an object model is being created for a well-defined simulation,

then identifying objects is not a problem. Although the number of objects might be large,

there are clear guidelines for inclusion of objects in the model. This is not the case for

developing a standard object model because there is not a well-defined problem statement

or even model resolution.

Even for a well-defined problem, arranging the objects into a single class

hierarchy for a combat simulation is difficult. The same set of objects can be classified

several ways. Usually features of interest are placed high up in the class hierarchy. This

is illustrated in Figure 27 of the JWARS object model, where Aircraft are first classified

by flight characteristics and then by primary mission. This scheme could easily be

reversed; Fighting Aircraft, Combat Support Aircraft and Transport Aircraft could be

ancestor classes of the Fixed Wing and Rotary Wing classes as shown in Figure 30.

48

A similar challenge occurs when arranging ground platforms into a hierarchy.

Often the grouping that is chosen is a function of the purpose of the model; this was the

case with the HLA object models developed for Janus. Since the standard army object

model is independent of implementation, an alternate methodology to classification was

employed.

Aircraft

FightingAircraft Transport AircraftCombat Support Aircraft

Rotary Wing Fixed WingFixed Wing Fixed WingRotary Wing Rotary Wing

Figure 31. Alternate JWARS Aircraft Class

B. COMPONENT BASED MODELS

One of the most versatile entities in the Army is the HMMWV. Depending on

how it is configured the HMMWV can be an anti-tank platform, anti-personnel platform,

an observation platform, a command and control platform or even an ambulance. This

wide variety of behaviors is achieved by adding and removing the appropriate

components. Adding a TOW missile system makes the HMMWV an effective tank

killer. Swap the TOW missile system with a laser designator/range finder and the same

HMMWV becomes a forward observation vehicle. If a similar approach is taken to

49

modeling battlefield entities, then the task of developing a standard object model is

greatly simplified.

The same modular approach was used to develop the standard army object model.

The model is documented with a streamlined form of Rumbaugh’s OMT notation.

Classes are identified and organized for each of the component superclasses. As the

classes are introduced they are defined, and similarities to other models are emphasized.

Attributes and methods are included with the classes. Each method may have arguments

and return a value; however, these parameters are not specified in the model. Selection of

a (standard) algorithm will dictate these parameters. This provides simulation developers

with as much flexibility as possible.

1. Platform and Platform Components Classes

The fundamental object in the model is the Platform. A Platform is defined as

something material that may be perceived by the senses and has the ability to carry

weapons or perform militarily useful functions. A unit does not meet this definition

because a unit may not be perceived by the senses. A group of platforms may be

perceived by the senses, but additional information is needed to classify a group as a unit.

A Platform Component is anything that may be added to or mounted on a Platform to

extend the Platform’s capabilities. The standard Platform Class and its associated

Platform Components are shown in Figure 31. The Platform class is also shown in Figure

32, which emphasizes the aggregation.

50

Hull

Weapon

maxEffRange

load()
aim()
fire()

Movement

maxVelocity
velocity
destination

moveTo()

Communication
maxRange

sendMessage()
receiveMessage()

Carrier

capacity

mount()
dismount()

Sensor

maxRange
detectionList

activate()
deactivate()

Supply
class

resupply()
consume()

Platform Component
status

Platform
Location
side
crew

assessDamage()

Is compose of

Figure 32. Standard Platform and Platform Component Class

Sensor

maxRange
detectionList

activate()
deactivate()

Weapon

maxEffRange

load()
aim()
fire()

Movement

maxVelocity
velocity
destination

moveTo()

Communication

maxRange

sendMessage()
receiveMessage()

Hull Supply

class

resupply()
consume()

Platform

Location
side
crew

assessDamage()

Carrier

capacity

mount()
dismount()

Figure 33. Platform Class Aggregation

The Platform Component Superclass has a single attribute of status. All

descendants, including the Platform class, inherit this attribute. The status attribute is

meant to indicate the degree of functionality of a Platform Component or a Platform. The

simplest implementation would be a boolean variable that would indicate alive or dead.

Other implementations could indicate a percent of capability or use a multi-dimensional

variable.

The Platform class has attributes of Location, side and crew. Platform is the only

class that has a Location and a method to assessDamage(). This dictates that all entities

51

in the simulation that are subject to attrition and have a location must be a descendant of

Platform. The assessDamage() method is used to update the status of the Platform’s

Components. The Platform Class is equivalent to the Platform class in Janus, the Entity

class in ModSAF, the SPT class in WARSIM 2000 and the Entity class in JWARS.

The side attribute is used to differentiate between Platforms on different sides in a

battle. The crew attribute is used to keep track of how many crewmembers are parts of a

Platform. The crewmembers do not need to be explicitly modeled and this parameter

may simply be set to zero; however, since Platform is a Platform Component, the

crewmembers of a Platform may be modeled as other Platforms. This would allow the

crew to have mobility and to change vehicles if their original one is damaged or

destroyed. This design feature may be more useful in training simulations as opposed to

analytic simulations.

Location is also a class and is shown in Figure 33. Every combat simulation uses

some concept of Location. The subclasses of Location represent the two fundamental

ways to represent location. The Local Class represents those coordinate systems based on

Mercator Projection. The UTM grid systems used in military maps and for survey is an

example of this type of system. Geocentric coordinate systems are based on a spherical

surface that represents the Earth. UTM coordinates are usually used for land based

simulations while latitude and longitude are most commonly found in naval simulations.

The convert() and distanceFrom() methods could be overloaded to allow use with either

coordinate type. The purpose of the Location class is to allow simulations to internally

represent location with the method that is best suited for its problem domain, while also

enabling a certain degree of interoperability.

52

Location

distanceFrom()
convert()

Local

xCoordinate
yCoordinate
zCoordinate

distanceFrom()
convert()

Geocentric

latitude
longitude
altitude

distanceFrom()
convert()

Figure 34. Standard Location Class

2. Communication, Supply and Carrier Classes

 The Communication class is used to represent the ability for Units and Platforms

to communicate with each other. The use of the Communication class allows this ability

to be explicitly modeled (and thus possibly degraded). Simulations that do not explicitly

model communications would not use this class. The Communication class is equivalent

to the Communication Node class in JWARS and the Communication Equipment class in

WARSIM 2000.

The Supply class is intended to represent things that are consumed by Platforms.

The Supply class enables the chosen logistical constraints to be modeled. The class

attribute corresponds to the standard supply classes used in the DoD. The resupply() and

consume() methods would be used to increase or decrease the number of supplies. Some

aspects of supplies being consumed could easily be incorporated into methods of other

classes. For instance the fire() method in the Weapon class could make a call to the

53

consume() method of the appropriate Supply subclass to account for expended

ammunition. There are Supply classes in both JWARS and WARSIM 2000. Janus and

ModSAF keep track of certain supplies such as fuel and ammunition.

The Carrier class is intended to model the capability of certain Platforms to carry

other Platforms, such as an IFV carrying a squad of infantry or an ammo carrier carrying

ammunition. The capacity attribute places a physical constraint on the amount that can be

carried. The Cargo Container class in WARSIM 2000 may be equivalent; however, the

only associations outlined are between the Cargo Container class and the Supply class.

[Hopkins, 1997]. JWARS does not explicitly model a Carrier class, although a

Composite Asset may have one or more Assets or Composite Assets (Figure 23). Certain

Platforms can mount and dismount on other Platforms in Janus.

3. Weapon, Sensor, Hull and Movement Classes

The Weapon class is used to represent all objects that are designed to cause

damage to another object. Guns, bullets, bombs and shells are considered to be weapons.

The concept of weapons is represented in all of the simulations included in the thesis and

is usually central to any combat simulation; however, there is some disparity between the

studied simulations as to what exactly constitutes a “weapon.” For instance, JWARS

and WARSIM 2000 both consider missiles to be weapons while ModSAF considers a

missile to be a specialized Hull Class. Modeling a missile as a Weapon may cause some

difficulties, as some simulations may explicitly model the flight of missiles, which would

require a Location to be associated with the missile. One possible solution to this

dilemma is to model a missile as a Platform but have it implement an interface with the

Weapons Class.

54

The Movement class is used to represent the means of propulsion for a platform.

The Movement class is abstract and it is refined into four subclasses that represent

fundamentally different means of movement: Maritime, Ground, Space and Air. These

classes are further refined in Figure 34. The listing of the moveTo() method in each of

the subclasses indicates that this method is overridden.

Movement
maxVelocity
velocity
destination

moveTo()

Maritime

moveTo()

Ground

moveTo()

Space

moveTo()

Air

moveTo()

WheeledMovement

moveTo()

TrackedMovement

moveTo()

TowedMovement

moveTo()

Submersible

moveTo()

Rotary

moveTo()

Fixed Wing

moveTo()

Dismounted

moveTo()

Figure 35. Standard Movement Class

The Hull class is designed to hold the physical characteristics of a particular

platform. Since most simulations model different physical characteristics, it was

desirable to separate these attributes from the platform class. Although there is a strong

connection between the Hull and Movement classes (an armored hull usually implies

tracked movement) it is beneficial to separate the two ideas. This allows the modeler to

change the physical characteristics of a Platform without necessarily changing any

movement algorithms. The Hull class is the logical place to hold any attributes that

55

would be required by the Sensor class such as IR signatures or cross-sectional area. The

Hull class could also be used to model armor characteristics. If this level of detail is not

modeled then the Hull class is not needed. Features of the standard Hull class are

included in JWARS’s Platform class and ModSAF’s Hull Class. Due to the variety of

ways to model physical characteristics, no specific attributes are listed

The Sensor class is intended to contain attributes and methods associated with all

sensors and is shown in Figure 35. A Sensor is defined as any device that responds to

physical stimulus and is used to establish the existence or location of an entity. Sensor

classes are included in ModSAF, WARSIM 2000 and JWARS, but the criteria used to

subclass the Sensors differ. The standard Sensor class has Active and Passive sensors as

its two major subclasses. Active sensors rely on returns from transmitted energy while

passive sensors do not transmit energy. The maxRange attribute describes the physical

limitations of the Sensor. The detectionList attribute is meant to keep a list of all detected

entities. The activate() and deactivate() methods allow the Sensor to be turned on and

off. The details of the sensing algorithm used are hidden in the activate method.

Sensor
maxRange
detectionList

activate()
deactivate()

ActiveSensor

activate()
deactivate()

PassiveSensor

activate()
deactivate()

Figure 36. Standard Sensor Class

56

4. Platform Example

The two following examples demonstrate how the abstract classes presented so far

can be used to create concrete platforms. The first example specifies the minimum

classes that are required to create a generic tank. This is the most amount of detail that

the standards should specify. The second example extends this tank into an M1A2, a

specific tank model.

a. Generic Tank Example

An example of how a platform may be subclassed into a specific type of

vehicle is shown in Figure 36. The Tank class is a descendant of the Platform class. The

Tank class has exactly one Hull, and one Tracked Movement component. There are one

or more Active and Passive Sensors contained in the Tank, such as laser range finders and

IR sights on the main gun. A Tank is modeled with at least one DirectFire Weapon, its

main gun and possibly auxiliary DirectFire Weapons. Since it can fire projectiles with its

main gun there is at least one supply class. More could be added for additional weapons

or to keep track of fuel levels. Finally there is at least one Communication class, which

allows the Tank to communicate with other objects. There are no additional attributes or

methods added to this class, only the types and numbers of components are specified.

57

PassiveSensor

activate()
deactivate()

Platform
Location
side
crew

assessDamage()

Hull

1+

ActiveSensor

activate()
deactivate()

1+
DirectFire

load()
aim()
fire()

1+

TrackedMovement

moveTo()

1+

Communication
maxRange

sendMessage()
receiveMessage()

Tank

1+
1+

1+ 1+ 1+

Supply
class

resupply()
consume()

1+

Figure 37. Tank Class

b. M1A2 Example

Figure 37 shows an example of an M1A2 tank object that might be used in

a hypothetical simulation. This is an extension of the Tank class specified in Figure 36.

The parent classes are shown in parentheses. The cardinality of each of the Platform

Components is one, except for the VHFRadio, which has a cardinality of two. More

specialized classes have been added to the model and additional attributes are added to

some classes based on details in the simulation. For instance, the Tank(Hull) class has

additional attributes (IRSig, and visSig) based on the types of sensor that are used in the

simulation. The MainGun(Weapon) and CoAxMG(Weapon) classes have orientations

that are independent of the Tank(Hull) class orientation. The activate() and deactivate()

methods are overridden for each of the Sensor subclasses and the moveTo() method is

overridden for the TrackedMovement class.

58

Platform

Location
side
crew

assessDamage()

2
Tank(Hull)

orientation
IRSig
visSig

MainGun (Weapon)
caliber
orientation

VHFRadio (Communication)

CdrVision (PassiveSensor)
minThreshold

activate()
deactivate()

CoAxMG (Weaon)

caliber
orientation

Laser Range Finder (ActiveSensor)
pulseRepFreq

activate()
deactivate()

IRSights (PassiveSensor)
minThreshold

activate()
deactivate()

M1A2

MainGunRds (Supply)

Tank

TrackedMovement

moveTo()

Figure 38. M1A2 Class

C. STANDARD ALGORITHMS

The establishment of a collection of standard algorithms has three major benefits:

• Enforcing model consistency

• Supporting verification and validation

• Supporting simulation development

However, standards do have drawbacks. First, there is the possibility of adopting an

inadequate or even incorrect algorithm as the standard. Second, standards eliminate the

ability to cross check results derived from different approaches and assumptions. Finally,

standards may stifle innovation; a developer with a better algorithm may abandon it if

there is already an accepted standard. [AMSAA, 1996]

The standard army object model is capable of adapting to a wide variety of

algorithms. This allows new algorithms to be evaluated without creating a new

59

simulation. The following example illustrates how an attrition algorithms can be

incorporated into the Standard Army Object Model.

There are two basic steps in most high-resolution attrition algorithms. First an

algorithm determines if a target was hit. If there was a hit then the target assesses the

damage. A proposed standard algorithm requires the cross sectional area of the target that

is visible in order to compute an aimpoint. This establishes the need to add a

determineCrossSection() method to the hull class. The method is incorporated into the

Hull class because cross section is a function of physical attributes. This method would

need the Location of the Weapon that is aiming, thus Location would be an argument to

the method. Finally the target needs have an orientation, so this attribute is also added to

the Hull class. The modified hull class is shown in Figure 38.

Hull

orientation

determineCrossSection (Location)

Figure 39. Modified Hull Class

After an aimpoint is computed by the aim() method, the fire() method would

determine if there was a hit based on the cross-section that was visible and the range to

the target. If there was a hit then the target Platform’s assessDamage() method is

invoked. In order to compute the amount of damage, the target must know the type of

weapon that was used, the range of the shooter and the angle of impact. Thus the

assessDamage() algorithm requires a shooterLocation which would have type Location

and a weaponType which would be a Weapon subclass. The resulting method’s

signature looks like this: assessDamage(shooterLocation: Location; weaponType:

60

Weapon). The algorithm would update the status of all of the components contained in

the Platform based on the amount of damage. [AMSAA, 1996]

By adopting this standard algorithm, the need for adding specific Weapon and

Hull subclasses was made apparent. The algorithm used to calculate damage was based

on a table that accepted type of weapon and the type of hull as two of its arguments.

Some of the hull types included in the database are tanks, armored infantry fighting

vehicles, light armored vehicles, SP howitzers, and trucks. Some of these classes are

refined even further. Tanks are sub-classified by whether or not their ammunition is

compartmentalized. The weapon types are even more numerous. While all of these types

can be included in the standard object model, to do so now would dictate implementation

to developers.

D. DISCUSSION

The components that were modeled were based on basic battle field functions:

shooting, movement, detection, communication and control, and sustainment. This is a

logical division and its is shared by the object models that were analyzed.

Currently, none of the associations between the classes are included in the model,

although some are obviously implied. This is because implementation can be dictated by

associations and the standard army object model is designed to be independent of

implementation. The lack of associations also limits the signatures that are used with the

methods. This hampers interoperability; if the signatures for a method are NOT specified

then developers might as well use a different name for the method than the one that is

specified. In the above example some signatures were specified based on a proposed

61

standard algorithm. Thereafter, any simulation that used the same attrition algorithm

would know the signature and the information required for the assessDamage() method.

Standard algorithms and data are still under development; once they have been

completed, some associations may be outlined in the standard object model. One of the

dangers of developing standard algorithms independently is that different groups will

most likely come up with different classification schemes for the same objects. The

attrition category committee developed a variety of hull types for use in attrition

algorithms. If the acquisition category committee does not use the same hull types for its

sensor algorithms, then there is a fundamental conflict. The standard army object model

is an excellent tool to display the interaction between the recommended standards and to

resolve potential conflicts.

As standards are approved and incorporated into the standard army object model,

additional attributes will be added and signatures will be defined. This will increase the

amount of overhead that the standard will impose on developers. For instance, if a

sensing algorithm that uses IR signatures is adopted as a standard algorithm, then all

simulations will be required to add this attribute to the Hull class.

The FDB is still under development and currently contains limited numbers of

weapons and platform. Much of the data that is required by the standard object model is

contained in the existing version of the FDB. All of the vehicles listed had a maximum

velocity listed and most of the weapons had a maximum effective range, although there

were some notable exceptions, such as the main gun on the M1A2 main battle tank. The

standard object model should serve as a link between simulation developers and the FDB

62

developers, to ensure that the data used in the standard algorithms is contained in the

FDB.

The component classes that were developed are designed to be generic enough

that most simulations should be able to map their functionality into the Platform

Component structure. Therefore, the standard object model can also serve as a bridge

between legacy and developmental simulation.

63

V. CONCLUSION AND RECCOMENDATIONS

A. SUMMARY

This section contains conclusions and recommendations for the use of the

Standard Army Object Model. This thesis has developed a prototypical standard army

object model. Early work attempted to classify different types of platforms and

equipment. This proved to be too limited and unwieldy. Further analysis yielded a model

that uses a basic Platform class to which any number of standard components can be

added. This capability is key to providing for simulations that are flexible and extensible.

 All of the simulations studied had very similar object models whose

functionality was contained by the standard army object model. The only class that could

not be cleanly mapped into the proposed standard was the Computer class in

WARSIM2000. However, since this class is designed to meet a specific need for

WARSIM2000, it should not be needed in other simulations and therefore it was not

included in the standard. However, it is noted that there are no restrictions on adding

additional classes beyond those in the standard.

B. INTEROPERABILITY

The standard methods contained in the standard army object model allow the

communication between a Platform and its components. Placing these methods as high

up in the class hierarchy as possible maximizes the benefits of polymorphism and allows

other objects to access these methods without needing to know specific class of an object.

Specification of this minimal set of methods provides a ready interface for use with other

simulations.

64

C. REUSE

Polymorphism also allows the substitution of compatible components in a

Platform. For example, a tank may be fitted with an improved main gun or sensor

without having to alter the code that defines the tank or its other components. This

provides the opportunity to create libraries of standard components for use with multiple

simulations. This is a very important feature for use with analysis of alternatives when

procuring new weapons systems. It also allows simulations to grow as new systems are

added to the Army’s inventory. One of the reasons that so many new simulations are

developed is that older ones are unable to easily model new equipment.

D. FOCAL POINT

As standard algorithms are developed, they may be incorporated into the standard

army object model. This will further define the model and highlight inconsistencies

between the algorithms, e. g. two separate committees using different Hull types. The

FDB is also under development. It is essential that the FDB contains the data required by

the standard algorithms. The standard army object model can be used to state these data

requirements and can also help to organize the collected data using its components class

hierarchies.

E. AREAS FOR FURTHER STUDY

This is the initial draft of the standard army object model. It will be reviewed by

the Object Management Standards Category Coordinating Committee in October 1997.

Several of the standard algorithm committees also have products due by the end of the

calendar year. The object model proposed in this thesis should be updated to reflect any

recommended changes and the adopted algorithms.

65

Modeling and software development are iterative processes. As the development

of WARSIM 2000 and JWARS progress, there will most likely be changes to their object

models. This may suggest additional refinements for the standard army object model as

well. Finally, if the standard army object model is successfully adopted, then standard

object models should be developed for the other services as well as a joint model.

66

67

LIST OF REFERENCES

Army Modeling and Simulation Office, The Army Modeling and Simulation Master Plan,
AMSO, 18 May 1995.

Army Modeling and Simulation Office, Standards Category: Object Management, 1997
http://www.amso.army.mil/amso2/sp-div/process/obj-mgt.htm

Army Modeling and Simulation Office Army Model and Simulation Standards Report FY
97, December 1996.

Blakely, B., McDonald, K., Functional Description of the Battle Space White Paper,
United States Army Simulation, Training, and Instrumentation Command, 01 Apr 96.

Hopkins, B., Kastner, K., McCauley, B., Equipment - Object-oriented Analysis in
WARSIM 2000, 1997 Spring Interoperability Workshop, March, 1997.

JWARS Office, JWARS\JSIMS Memorandum of Agreement (MOA), 30 Nov, 1995,
http://www.dtic.mil/jwars/library.html

JWARS Office, The Joint Warfare System Mission Space Model, July 10, 1996,
http://www.dtic.mil/jwars/library.html

JWARS Office, The Joint Warfare System Object Model, September 24, 1996,
http://www.dtic.mil/jwars/library.html

Kastner, K., McCauley, B., Object-oriented Analysis - Case Study, 1996 Fall
Interoperability Workshop, September, 1996.

Larimer. Larry R., Building an Object Model of A Legacy Simulation, Naval Postgraduate
School, June 1997.

Loral Advanced Distributed Simulation, ModSAF Kit A (User’s Manual), DIS Service
Center, September, 1995

Pettitt, Brian L., Rhinesmith, Frank, Functional Description of the Battle Space, United
States Army Simulation, Training, and Instrumentation Command,
http://fdb.orlando.veda.com:443/frames/info.htm

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorenson, W., Object-oriented
Modeling and Design, Prentice Hall, 1991.

Under Secretary of Defense Memorandum, For: Secretary of the Army, SUBJECT: DoD
High Level Architecture (HLA) for Simulations, 10 September 1996.

68

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center..2
8725 John J. Kingman Road., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library..2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Director Training and Education……….............................….....1
MCCDC, Code C46
1019 Elliot Rd.
Quantico, Virginia 22134-5027

4. Director, Marine Corps Research Center ..………...2
MCCDC, Code C40RC
2040 Broadway Street
Quantico, Virginia 22134-5107

5. Director Studies and Analysis Division ...….…..1
MCCDC, Code C45
300 Russel Road
Quantico, Virginia 22134-5130

6. Marine Corps Representative ..……..........…........1
Naval Postgraduate School
Code 037, Bldg. 234, HA-220
699 Dyer Road
Monterey, CA 93940

7. Marine Corps Tactical Systems Support Activity……...….......1
Technical Advisory Branch
Attn: Maj J.C. Cummiskey
Box 555171
Camp Pendleton, CA 92055-5080

8. Professor Arnold H. Buss, Code OR/Bu...2
Operations Research Dept.
Naval Postgraduate School
Monterey, California 93943-5101

70

9. Director...1
U. S. Army TRADOC Analysis Center-Monterey
P. O. Box 8692
Monterey, California 93943-0692

10. Major Leroy Jackson..2
U.S. Army TRADOC Analysis Center-Monterey
P. O. Box 8692
Monterey, California 93943-0692

11. Captain Douglas E. Dudgeon...2
1817 Leisure World
Mesa, Az 85206

12. Army Modeling and Simulation
Office……………………………………………..…4

Attn: Standards and Policy Division, MAJ Johnson
Crystal Gateway 5, Suite 503E
1111 Jefferson Davis Highway
Arlington, Va 22202

